Development of memory CD8+ T cells and their recall responses during blood-stage infection with Plasmodium berghei ANKA.
نویسندگان
چکیده
Conditions required for establishing protective immune memory vary depending on the infecting microbe. Although the memory immune response against malaria infection is generally thought to be relatively slow to develop and can be lost rapidly, experimental evidence is insufficient. In this report, we investigated the generation, maintenance, and recall responses of Ag-specific memory CD8(+) T cells using Plasmodium berghei ANKA expressing OVA (PbA-OVA) as a model system. Mice were transferred with OVA-specific CD8(+) T (OT-I) cells and infected with PbA-OVA or control Listeria monocytogenes expressing OVA (LM-OVA). Central memory type OT-I cells were maintained for >2 mo postinfection and recovery from PbA-OVA. Memory OT-I cells produced IFN-γ as well as TNF-α upon activation and were protective against challenge with a tumor expressing OVA, indicating that functional memory CD8(+) T cells can be generated and maintained postinfection with P. berghei ANKA. Cotransfer of memory OT-I cells with naive OT-I cells to mice followed by infection with PbA-OVA or LM-OVA revealed that clonal expansion of memory OT-I cells was limited during PbA-OVA infection compared with expansion of naive OT-I cells, whereas it was more rapid during LM-OVA infection. The expression of inhibitory receptors programmed cell death-1 and LAG-3 was higher in memory-derived OT-I cells than naive-derived OT-I cells during infection with PbA-OVA. These results suggest that memory CD8(+) T cells can be established postinfection with P. berghei ANKA, but their recall responses during reinfection are more profoundly inhibited than responses of naive CD8(+) T cells.
منابع مشابه
Malaria-specific and nonspecific activation of CD8+ T cells during blood stage of Plasmodium berghei infection.
Cerebral malaria is one of the severe complications of Plasmodium falciparum infection. Studies using a rodent model of Plasmodium berghei ANKA infection established that CD8(+) T cells are involved in the pathogenesis of cerebral malaria. However, it is unclear whether and how Plasmodium-specific CD8(+) T cells can be activated during the erythrocyte stage of malaria infection. We generated re...
متن کاملPrevention of experimental cerebral malaria by Flt3 ligand during infection with Plasmodium berghei ANKA.
Dendritic cells are the most potent antigen-presenting cells, but their roles in blood-stage malaria infection are not fully understood. We examined the effects of Flt3 ligand, a cytokine that induces dendritic cell production, in vivo on the course of infection with Plasmodium berghei ANKA. Mice treated with Flt3 ligand showed preferential expansion of CD8(+) dendritic cells and granulocytes, ...
متن کاملDepletion of CD4+ or CD8+ T-cells prevents Plasmodium berghei induced cerebral malaria in end-stage disease.
The role of T-cells in development of experimental cerebral malaria was analysed in C57B1/6J and C57B1/10 mice infected with Plasmodium berghei K173 or Plasmodium berghei ANKA by treatment with anti-CD4 or anti-CD8 mAbs. Mice were protected against cerebral malaria (CM) when anti-CD4 or anti-CD8 mAbs were injected before or during infection. Even in mice in end-stage disease, i.e. with a body t...
متن کاملPerivascular Arrest of CD8+ T Cells Is a Signature of Experimental Cerebral Malaria
There is significant evidence that brain-infiltrating CD8+ T cells play a central role in the development of experimental cerebral malaria (ECM) during Plasmodium berghei ANKA infection of C57BL/6 mice. However, the mechanisms through which they mediate their pathogenic activity during malaria infection remain poorly understood. Utilizing intravital two-photon microscopy combined with detailed ...
متن کاملHost Resistance to Plasmodium-Induced Acute Immune Pathology Is Regulated by Interleukin-10 Receptor Signaling
The resolution of malaria infection is dependent on a balance between proinflammatory and regulatory immune responses. While early effector T cell responses are required for limiting parasitemia, these responses need to be switched off by regulatory mechanisms in a timely manner to avoid immune-mediated tissue damage. Interleukin-10 receptor (IL-10R) signaling is considered to be a vital compon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 189 9 شماره
صفحات -
تاریخ انتشار 2012